4/V787A, Na(v)1.4/V787C, and Na(v)1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary
beta 1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 mu M indoxacarb was significantly increased in all three mutated Go6983 channels, whereas sensitivity to inhibition by 10 mu M metaflumizone was significantly reduced in Na(v)1.4/V787A channels and completely abolished in Na(v)1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than
the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depend on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. (C) 2012 Elsevier Inc. All rights reserved.”
“Basic science literature ABT-737 abounds with molecules that promise to ameliorate almost any disease, from curing cancer to slowing the aging process itself. However, most of these compounds will never even be evaluated in humans, let alone proven effective. Here, we use resveratrol as an example to highlight the enormous difficulties in understanding pharmacokinetics, determining side effects, and, ultimately, establishing mechanisms of action for a natural compound. Despite extensive interest and effort, and continuing promising results from basic science groups, very little is known even today about the effects of resveratrol in humans. Part of PAK6 the problem is the unattractiveness
of natural compounds to large, well-funded companies that could run clinical trials because developing their own molecules affords much greater protection for their intellectual property. In fact, selling unpatentable material motivates smaller nutraceutical companies to complicate the scientific problem even more each creates its own proprietary blend, making it extremely difficult to compare their data with those of other companies, or of academic labs using pure compounds. But even beyond these problems lies a deeper one; resveratrol, and almost every natural compound, is likely to have many clinically relevant targets with different dose response profiles, tissue distributions, and modifiers.