Antimicrob Agents Chemother 1999, 43: 1693–1699.PubMed 55. Cox SD, Mann CM, Markham JL, Gustafson JE, Warmington JR, Wyllie SG: Determining the Antimicrobial Actions of Tea Tree Oil. Molecules 2001, 6: 87–91.CrossRef Authors’ contributions AFR, FA and IAK have made substantial contributions to conception and design, acquisition of data, analysis and interpretation of data. ASS and DSA have been involved in drafting the manuscript and revising it critically for important intellectual content. BAS and SCT provided the all four Boswellic acid molecules. All Authors helped to draft the manuscript, participated sufficiently in the work to take public responsibility for appropriate portions
of the content and approved the final manuscript.”
“Background
H 89 purchase Campylobacter species are one of the most common causes of see more human enteritis in North America (Centers for Disease Control and Prevention, U.S. Department of Agriculture, and Food and Drug Administration Collaborating Sites Foodborne Disease Active Survey Network [FoodNet]; Public Health Agency of Canada website, http://dsol-smed.phac-aspc.gc.ca/dsol-smed/ndis/diseases/camp_e.html). While Campylobacter jejuni and Campylobacter coli are the most commonly isolated species, studies have also implicated ‘cryptic’ species within the genus, such as Campylobacter concisus, as causal agents of acute enteritis [1–4]. Compared to C. jejuni, C. concisus is fastidious to isolate as it is often sensitive to selective antimicrobial agents commonly-used in conventional isolation media, and generally requires a hydrogen-enriched atmosphere and a prolonged incubation period for growth [5]. As such, it
is rarely cultured by standard isolation methods employed by many diagnostic facilities. Although knowledge of its clinical importance is limited, C. concisus has been cited as an CYTH4 emerging human pathogen [5, 6]. Campylobacter concisus was originally isolated from periodontal lesions [7]. However, its pathogenic role in oral cavity infections remains uncertain, since it can also be isolated from healthy gingiva [8]. Additionally, C. concisus has been isolated from the feces of diarrheic patients [1–4], often in the absence of known pathogens. However, the bacterium is also frequently isolated from feces of asymptomatic patients, which has lead to the conclusion that it may be part of the normal intestinal microbiota [9, 10]. Some evidence indicates that C. concisus may be an opportunistic pathogen. For example, Engberg et al. [9] observed that C. concisus was predominantly isolated from pediatric, elderly, and immunocompromised patients, in contrast to C. jejuni and C. coli which are typically isolated from diarrheic patients of all ages. Consequently because of its association with diarrheic, healthy, and immunocompromised patients, the specific role of C.