At C-824T, factor MEF2 acted in a directionally coordinate 4SC-202 mw fashion (at T>C) to explain the in vivo trait associations, whereas at A-581G, factors SP1, AP2, and EGR1 displayed similar differential actions (at G>A). Finally, chromatin immunoprecipitation demonstrated that the endogenous factors bound to the motifs in cella.
Conclusion-We conclude that common genetic variants in
the proximal TH promoter, especially at C-824T and A-581G, are functional in cella and alter transcription so as to explain promoter marker-on-trait associations in vivo. MEF2, FOXD1, and SRY contribute to functional differences in C-824T expression, whereas SP1, AP2, and EGR1 mediate those of A-581G. The SRY effect on TH transcription suggests a mechanism whereby male and female sex may differ in sympathetic activity and hence blood pressure. These results point to new strategies for diagnostic and therapeutic intervention into disorders of human autonomic function and their cardiovascular consequences. (Circ Cardiovasc Genet. 2010; 3: 187-198.)”
“Perchlorate, a kind of inorganic chemical, is mainly used in defense industry and widely used in other civilian areas. It was well
known that perchlorate exerts its thyrotoxicant effect on thyroid homeostasis via competitive inhibition of iodide uptake. However, some details of mechanism by which perchlorate disturb thyroid homeostasis are unknown and remain to be elucidated. The present study aimed to investigate if iodide insufficiency in the thyroid is the main mechanism by which
VX-689 in vitro perchlorate exerts its effect on the thyroid gland. We highlighted and measured the gene expression of NIS, Tg, and TPO which involved in thyroid hormone biosynthesis. Thyroid effects of perchlorate were identified by assessing different responses of these genes at the treatments of perchlorate and iodine deficiency. The results indicated that high dose perchlorate (520 mg kg-1 b.wt.) can induce a significant decrease in body weight and cause hypertrophy of thyroid gland, with a decreased level of FT3, MCC950 FT4 and a remarkable increased level of TSH. In addition, the significant decreased gene expression of Thyroglobulin (Tg) and thyroperoxidase (TPO) were both observed at the treatment of high dose perchlorate. These results suggested that perchlorate can suppress gene expression of Tg and TPO which directly involved in biosynthesis of thyroid hormones, and may therefore aggravate the perturbation of thyroid homeostasis in addition to competitive inhibition of iodide uptake. (c) 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.”
“Background-Identification of infants at risk for sudden arrhythmic death remains one of the leading challenges of modern medicine.