Evidence to answer this question should be expected to be preserved in the Precambrian rock record. For example, as is shown here, stromatolites, Blasticidin S microbially layered deposits dominated today by filamentous and coccoidal cyanobacteria, are present throughout virtually all of the known geological record; cellularly preserved fossils of cyanobacteria dominate the documented record of Precambrian life; and rock-derived
carbon isotopic data are consistent with the presence of photosynthetic microorganisms back to ~3,500 Ma ago and, possibly, to >3,800 Ma ago. Nevertheless, as is also shown here, a firm answer to the question of the time of origin of oxygenic photosynthesis is not yet available: the earliest known stromatolites might have been formed by anoxygenic,
selleckchem rather than O2-producing, photosynthesizers; the cyanobacterium-like fossils in rocks ~3,500 Ma might be remnants of non-O2-producing microbes; and though a vast amount of carbon isotopic data are consistent with the presence of oxygenic photosynthesis as early as ~3,500 Ma ago, they do not rule out the possibility that the role of primary producer in the world’s most ancient ecosystems was played by anaerobic, anoxygenic, photosynthetic bacteria. It should not be surprising that the question of time of origin of O2-producing photosynthesis (i.e., of cyanobacteria) is yet unresolved. In contrast with paleontological studies of the Phanerozoic history of life, the basic outlines of which were already known in the mid-1800s when they served as the basis for Darwin’s
great tome on the Origin of Species, active investigation of the earlier, Precambrian, fossil record did not commence until the mid-1960s, more than a century later (Barghoorn and Schopf 1965; Barghoorn and Tyler 1965; Cloud 1965; Schopf 1968). And although great progress has been made in the ensuing decades (see, for example, Schopf and Bottjer 2009)—showing that Lck Precambrian microbes were abundant, ubiquitous, https://www.selleckchem.com/products/azd5363.html metabolically diverse, and biotically predominant—knowledge of the early fossil record remains far from complete. Moreover, due to the “geologic cycle,” the repeated sequence of mountain building, erosion, and deposition into sedimentary basins of the eroded mineral grains thus produced, the average “lifetime” of a geological unit is only some 200 Ma. For this reason, the rock record that has survived to the present rapidly decreases with increasing geological age, a petering-out that severely limits the ancient fossil record available for study.