If these cells are defective in or resistant to apoptotic death,

If these cells are defective in or resistant to apoptotic death, they would not be eliminated and Y-27632 manufacturer could, therefore, elicit autoimmune disease [18]. A number of genes are involved in T cell apoptosis in SLE, including Fas, FasL, Bcl-2, Bcl-xL, myc, Nur 77 and p53 [19–21]. Among these, Fas and FasL increase T cell apoptosis, whereas Bcl-2 and Bcl-xL promotes T cell survival by blocking AICD [19–21]. The expression of Fas and FasL has been reported to be increased in SLE patients [15,22,23], leading to

the hypothesis that apoptotic death of T cells is excessive in SLE patients [24]. However, a discrepancy exists as some reports have also demonstrated that AICD of T cells is defective in SLE patients [25–27]. This discrepancy could be due to LDK378 research buy the relative abundance of anti-apoptotic molecules over pro-apoptotic proteins in SLE T cells or to other mechanisms that impede the T cell receptor- or Fas-mediated apoptotic pathway. In this study, we demonstrated first that oestradiol decreased

the AICD of SLE T cells, and secondly that oestradiol down-regulated the expression of FasL in activated SLE T cells both at the protein and mRNA levels. The Fas expression in activated T cells was also repressed by oestradiol. In contrast, testosterone increased FasL expression dose-dependently in SLE T cells. The inhibitory effect of oestradiol on FasL expression was mediated by a receptor-coupling event and, moreover, pretreatment of FasL-expressing cells with oestradiol inhibited the apoptosis of Fas-sensitive cells. These data provide evidence that oestrogen regulates the AICD of T cells by down-regulating FasL expression, suggesting that oestrogen Bacterial neuraminidase inhibition of T cell death may allow for the persistence of activated T cells, thereby exhibiting the detrimental action of oestrogen on SLE activity. Oestrogen has contradictory effects on different types of cells. Huber et al. demonstrated that in Coxsackie virus B3-speciifc T cell clones, 17β-oestradiol prevented Fas-dependent apoptosis by altering Bcl-2 expression while testosterone promoted it [28]. Oestrogen also reduced AICD of normal peripheral blood T cells stimulated

with anti-human CD3 antibody [29], a finding which is supportive of our results. However, in lupus-prone mice, treatment with E2 caused a decrease in thymic cellularity, but up-regulated several genes involved in apoptosis, including FasL and caspases in thymocytes of these mice [30]. In addition, 17β-oestradiol altered Jurkat lymphocyte cell cycling and induced apoptosis through suppression of Bcl-2 and cyclin A [29,31]. It has been also demonstrated that oestrogen protected bone loss by inducing FasL in osteoblasts, thereby decreasing osteoclast survival [32]. Therefore, it seems likely that oestrogen-induced decrease in cell survival is not a universal phenomenon, but is limited to primary T cells and can be different depending on cell types.

Comments are closed.