The increase in overall average peak and mean power with BTE supplementation implies increased performance with BTE which may be due to increased recovery between intervals of the WAnT protocol. As well, the blood lactate levels were higher with BTE supplementation at 0 and 5 min post high intensity exercise which is consistent with the higher workload completed. Based on these power and lactate results, the BTE supplementation CB-839 order appears to have resulted in the performance of more total work, which amplifies the significance of the biochemical and hormonal findings. BTE supplementation,
therefore, may not have only sped the recovery from the oxidative stress response, but may have also blunted the response as the anticipated increase in appearance of oxidative stress and inflammatory markers with increase in workload was not observed. Future research on BTE supplementation should focus on the link between the acute physiological effects and the long-term outcome of increased anaerobic exercise performance over a longer duration of time. Evaluating the effect of BTE supplementation on the performance of progressive anaerobic exercise training would aid in elucidating the pathway from reduced oxidative stress, HPA recovery, and DOMS responses to increased performance small molecule library screening and enhanced fitness. Inflammation, oxidative stress, and the occurrence of DOMS following
high intensity anaerobic exercise are essential processes for acquisition of strength and muscle hypertrophy after exercise [1, 10, 12]. In excess, these responses delay recovery and result in reduced power and performance. In theory, improved training and performance would result from reducing the length of recovery and/or the extent of muscle damage after a high-intensity exercise bout. Theaflavins, found in black tea extract, have been observed Edoxaban to have antioxidant effects [4] as well as anti-inflammatory effects [8, 19]. Multiple epidemiological studies have found an inverse association with black tea consumption and chronic disease incidence/mortality including: congestive heart disease, stroke, atherosclerosis, pancreatic,
bladder, and prostate cancers [7]. These findings have led to numerous studies examining the antioxidant effects of tea polyphenols, with emphasis on green tea and its catechins, in several models of disease. The use of antioxidants to improve exercise performance and reduce muscle soreness is not a new concept. In this capacity, the antioxidant effects of vitamin C and E have been extensively researched [16–18]. Green tea extract (GTE) and its effects on exercise capacity and metabolism have been examined in mouse models. The duration of treadmill running was prolonged in BALB/c mice given GTE [23]. Exercise combined with GTE had a synergistic effect in attenuating high fat diet induced obesity in C57BL/6J mice [24].