The infiltrating neutrophils produce ROS, causing inflammatory re

The infiltrating neutrophils produce ROS, causing inflammatory reactions inside the skeletal muscles, thus destroying the tissues. This damage would further recruit neutrophils into the muscles causing excessive inflammatory

JPH203 in vivo reaction. Excessive inflammatory reaction reduces the lymphocyte count and lowers immunological function. In addition, excessive inflammatory reaction increases myocytolysis. The results of this study suggest that CT acts on neutrophils to suppress excessive inflammatory reactions, protect immunological function (blunted decline in lymphocytes), and reduce the breakdown of skeletal muscle caused by excessive inflammatory reactions. Thus, CT intake may contribute to the prevention of infectious disease in athletes during periods of intense training and suppress the breakdown of skeletal muscles through a mechanism involving the suppression of excessive inflammatory

reaction. Conclusion CT supplementation significantly inhibited the increase in neutrophil count and the reduction in lymphocyte count induced by intense endurance exercise. In addition, CT supplementation has a tendency to suppress the increase in Mb level induced by intense endurance exercise. These results suggest that CT supplementation may suppress the exercise-induced inflammatory response and may help to reduce immunosuppression and inflammatory-derived muscle damage in BIRB 796 molecular weight response to acute exercise stress. Periods of increased training that commonly occur during training camps for athletes often are accompanied unless by high-intensity and high-frequency exercise that can lead to disturbance of the immune system. The present study supports other reports about CT supplementation that indicate the possibility that the consecutive intake of CT for at least 7 days before the camp suppresses the disturbance of immune function induced by high-intensity and high-frequency of exercise. Therefore, prophylactic supplementation with CT in persons

training for high-intensity endurance exercise may, at least partially, support sustained immune function. Further research is needed to determine if CT supplementation can affect responses to chronic exercise stress and overtraining. Acknowledgements We would like to thank Mr. Syunsuke Magara, captain of the long distance relay team (Takaoka University of Law), as well as all the running team members for their cooperation, and Mr. Munenori Hoshi (Health CBL-0137 concentration Sciences Research Institute, Inc., Japan) who helped greatly in the analysis. We would also like to express our gratitude to visiting Prof. Yutaka Inaba (Department of Epidemiology and Environmental Health, Juntendo University School of Medicine, Japan) and Prof. Isao Nagaoka (Department of Host Defense and Biochemical Research, Juntendo University School of Medicine, Japan) for their guidance. References 1.

Comments are closed.