The pellet obtained was suspended in Buffer A plus 0.5% Triton X-100 (Buffer B) at room temperature. After 1 h, the suspension was ultracentrifuged (161,000 × g, 1 h), and the supernatant obtained was stored at 4°C. The cell-free extract solubilized
(about 120 mg) was applied to a column of TALON metal affinity resin (TaKaRa Bio, Inc. (Shiga, Japan); 10 × 15 cm). The column was equilibrated with Buffer B at a flow rate of 0.5 ml/min, and washed successively with Buffer B (90 ml), Buffer B plus 10 mM Imidazole (16 ml), Buffer B plus 20 mM Imidazole (16 ml), and Buffer B BIBW2992 price plus 50 m M Imidazole (4 ml). The adsorbed protein was eluted with Buffer B plus 250 mM imidazole (20 ml). The elution was collected with a Bio-collector (ATTO, Tokyo. Japan, 2 ml/tube), and the protein concentration MLN2238 order was measured with a RC DC Protein assay kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The fractions containing the D-lactate dehydrogenase were dialyzed against two 1-l portions of Buffer A for 4 and 12 h, and stored at 4°C. Comparative transcriptome analysis using DNA microarrays Generation of C. glutamicum whole-genome DNA microarrays, total RNA preparation, synthesis of fluorescently labelled cDNA, microarray hybridization, washing, and statistical data analysis were performed as described previously [35–38]. Genes exhibiting mRNA levels that were significantly changed (P ≤ 0.05 in Student’s t test) by at least a factor of 2.0 were determined
in three DNA microarray experiments performed with RNA isolated from three independent cultures. The processed and normalized data have been deposited in the NCBI’s Gene Expression Omnibus and are accessible under the accession number Bcr-Abl inhibitor GSE25704. Results Cg1027 encodes D-lactate dehydrogenase The C. glutamicum ATCC 13032 gene cg1027 was annotated to code for D-lactate dehydrogenase [39] as the deduced protein shows similarities to FAD/FMN-containing dehydrogenases encoded by the cluster of orthologous genes COG0277. The deduced
protein contains the Selleck AZD1390 conserved domain PRK11183, and the domain (aa 279-570) was similar to membrane-binding D-lactate dehydrogenases belonging to the protein family pfam09330. In order to determine whether the gene product of cg1027 is indeed active as D-lactate dehydrogenase, the gene was cloned into pET14b, and the hexahistidine-tagged protein was purified from E. coli BL21 (DE3) harboring pET14b-dld. Quinone-dependent D-lactate dehydrogenase activity was detected by using 2,6-dichloroindophenol as an electron acceptor. The optimum assay conditions were observed in a 100 mM potassium phosphate buffer at a pH of 7.0 and a temperature of 45°C. Subsequently, Dld activity was assayed at 30°C, the optimal temperature for growth of C. glutamicum. The enzyme showed Michaelis-Menten kinetics with D-lactate as the substrate and it was determined that 0.61 mM of D-lactate resulted in half maximal enzyme activity. The observed V max was 73.5 μmol mg-1.