[79]. Briefly, 20 μg of total RNA was reverse transcribed using oligo(dT)21 in the presence of Cy3 or Cy5-dCTP (Invitrogen) and Superscript III reverse transcriptase (Invitrogen). Thereafter, template RNA was degraded by adding 2.5 units RNase H (USB) and 1 μg RNase A (Pharmacia) followed by incubation for 15 min at 37°C. The labeled
cDNAs were purified with QIAquick PCR Purification Kit (Qiagen). Prior to hybridization Cy3/Cy5-labeled cDNA was quantified using a NanoDrop ND-1000 UV-VIS spectrophotometer (NanoDrop) to confirm dye incorporation. Pre-hybridization and hybridization solutions consisted of DIG Easy Hyb solution (Roche Diagnostics, Mannheim, Germany) with 0.45% salmon sperm DNA and 0.45% yeast tRNA. Slides were washed once in 1.0% SSC, 0.2% SDS at 42°C for 10 min, twice in 0.1% SSC, 0.2% SDS at 42°C for 10 min, once in 0.1% SCC at 24°C for 5 min, followed P505-15 purchase by four rinses in 0.1% SSC. Chips
were air dried before being scanned using a ScanArray Lite microarray scanner (Perkin Elmer). QuantArray was used to quantify fluorescence intensities. Data handling, analysis and normalization were carried out using Genespring GX v.7.3 (Agilent Technologies, CA). Genes with statistically significant changes in transcript abundance in each experiment were identified using a 1.5-cutoff and Silmitasertib mw Welch t-test with a False Discovery Rate (FDR) less than 5%. Gene annotations were from http://www.candidagenome.org or http://www.yeastgenome.org. The latter database was accessed using the DAVID search program [80]. Selleck 3MA Expression analysis by real-time quantitative PCR cDNA was synthesized from 5 μg of total RNA using the reverse-transcription system (50 mm Tris-HCl, 75 mm KCl, 10 mm dithiothreitol, 3 mm MgCl2, 400 nm oligo(dT)15, 1 μm random hexamers, 0.5 mm dNTP, 200 units
Superscript II reverse Verteporfin manufacturer transcriptase; Invitrogen). The total volume was adjusted to 20 μL and the mixture was then incubated for 60 min at 42°C. Aliquots of the resulting first-strand cDNA were used for real-time PCR amplification experiments. Real-time PCR was performed using the Corbett Rotor-Gene RG-3000A (Corbett Research, Sydney, Australia) with the SYBR Green PCR master mix (Qiagen) according to the manufacturer’s instructions. After 10 min denaturation at 95°C, the reactions were cycled 40 times at 95°C for 15 s, 56°C for 15 s and 72°C for 30s. To verify that only the specific product was amplified, a melting point analysis was performed after the last cycle by cooling samples to 55°C and then increasing the temperature to 95°C at 0.2°C per second. A single product at a specific melting temperature was found for each target. All samples were tested in triplicate and the mean was determined for further calculations. Each run included a no template control to test for assay reagent contamination. To evaluate the gene expression level, the results were normalized using Ct values obtained from Actin (Act1, orf19.5007).