(C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society

(C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.”
“Ritalin (methylphenidate

hydrochloride, MP) is a non-amphetamine psychostimulant and is the drug of choice to treat children and adults diagnosed with the attention deficit hyperactivity disorder (ADHD). Several studies have demonstrated that rats treated with MP during early developmental stage exhibit alterations in anxiety-related processes such as an increased response to stressful stimuli and elevated plasma levels of corticosterone. Accordingly, the present study was designed to further characterize the neural and behavioral consequences of withdrawal from MP in adult rats and its influence on

the neural reactivity of the dorsal midbrain. After initial selleck products exposure to an elevated plus-maze (EPM), brainstem neural activation, elicited by exposure to EPM aversive cues, was analyzed using a Fos-protein immunolabeling technique. Additional independent groups of animals were submitted to electrical SP600125 stimulation of the dorsal column (DPAG) or the startle response procedure, in order to verify the influence of withdrawal from MP on the expression of unconditioned fear induced by DPAG activation and the effects of or withdrawal from MP on motor response, respectively. Our results provide new findings about the influence of MP treatment in adult rats, showing that, after a sudden MP treatment-break, increased anxiety, associated with the neural sensitization of anxiety-related regions, ensues. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.”
“One session of sustained unilateral voluntary Selleckchem Ilomastat muscular contractions increases central fatigue and induces a cross-over of fatigue of homologous contralateral muscles. It is not known, however, how this cross-transfer affects contralateral unipedal postural control. Moreover, contralateral neurophysiological effects

differ between voluntary muscular contractions and electrically stimulated contractions. The aims of this study were thus to examine the effects of muscle fatigue on contralateral unipedal postural control and to compare the effects of stimulated and voluntary contractions. Fifteen subjects took part in the protocol. Fatigue of the ipsilateral quadriceps femoris was generated either by neuromuscular electrical stimulation (NMES) or by isometric voluntary muscular contraction (VOL). Postural control on the contralateral limb was measured before (PRE condition) and after the completion of the two fatiguing exercises (POST condition) using a force platform. We analyzed body sway area and the spectral power density given by the wavelet transform. In POST condition, postural control recorded in the unipedal stance on the contralateral limb was disturbed after NMES and VOL fatiguing exercises.

Comments are closed.